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Brain-inspired computing is an emerging field, which aims to extend the capabilities of information technology beyond digital logic.
A compact nanoscale device, emulating biological synapses, is needed as the building block for brain-like computational systems.
Here, we report a new nanoscale electronic synapse based on technologically mature phase change materials employed in optical
data storage and nonvolatile memory applications. We utilize continuous resistance transitions in phase change materials to mimic
the analog nature of biological synapses, enabling the implementation of a synaptic learning rule. We demonstrate different forms of
spike-timing-dependent plasticity using the same nanoscale synapse with picojoule level energy consumption.
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he efficiency of today’s information processors has been

dominated by complementary metal—oxide—semiconductor
(CMOS) transistor scaling based on Moore’s law. However, in the
nano era CMOS scaling started to face significant barriers in
achieving historical performance gains." Besides the physical limits,
the conventional computing paradigm based on binary logic and
Von Neumann architecture becomes increasingly inefficient as the
complexity of computation increases. For some computational
problems (such as genetics data from DNA microarrays, image
and sensor data from satellites, relationships in social networks, and
metabolic pathways in biological networks) the computation time
scales exponentially with the input size,” making it difficult to
perform such tasks with conventional computers. Hence, new
computational paradigms and architectures are being explored to
extend the capabilities of information technology beyond digital
logic. As compared to biological systems, today’s programmable
computers are 6 to 9 orders of magnitude less efficient in complex
environments.” Simulating S seconds of brain activity takes 500 s
and needs 1.4 MW of power, when state-of-the-art supercomputers
(ie, IBM Blue Gene) are used.* The power dissipation in the
human central nervous system is on the order of 10 W. The superior
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features of the brain, lacking in today’s computational systems, are
ultrahigh density, low energy consumption, parallelism, robustness,
plasticity, and fault-tolerant operation. The human brain consists of
~10"" neurons and an extremely large number of synapses, ~10",
which act as a highly complex interconnection scheme among
neurons.” Synapses dominate the architecture of the brain and are
responsible for massive parallelism, structural plasticity, and robust-
ness of the brain. They are also crucial to biological computations
that underlie perception and learning.6 Therefore, a compact
nanoelectronic device emulating the functions and plasticity of
biological synapses will be the most important building block of
brain-inspired computational systems.

The anatomical discoveries and physiological studies in the
twentieth century have led to the theory that learning could be a
consequence of changes in the synaptic strength. The well-
known theory based on synaptic plasticity, known as Hebbian
learning,7 suggests that the connection strength between
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Figure 1. Illustration and characteristics of bioinspired electronic synapses. (a) Interconnection scheme of PCM synapses to reach ultrahigh density and
compactness of brain is shown. In the crossbar array architecture, PCM synapses lie between postspike and prespike electrodes, inspired by biological
synapses formed between presynaptic and postsynaptic neurons. The cross sections of depressed (mushroom shaped amorphous region shown in red)
and potentiated synapses are shown in the schematic. (b) Cross-section TEM images of electronic synapses made of GST are shown. The cells are
programmed to fully set (500 ), partially reset (200 kQ2), and fully reset states (2 M) before TEM sample preparation. In transition from set state to
reset state, volume of the amorphous region at the top of the bottom electrode grows and when it fully covers the bottom electrode, the fully reset state is
reached. The inset of the fully reset state shows a diffraction pattern for the mushroom shaped amorphous region. Diffraction pattern away from bottom
electrode shows that GST is polycrystalline. (c) Gradual reset of the cell resistance is implemented by using pulses with increasing amplitude in 2—4 V
range with 20 mV voltage steps. Gradual set of the cell resistance is achieved by using stair-case pulses with an increasing step of 0.1 V. There are 20 pulses
for each voltage step, 0.5, 0.6, 0.7, 0.8, and 0.9 V. (d) Finite element simulations performed with COMSOL are shown. Different colors represent the
temperatures across the GST region for reset voltages ranging from 0.7 to 0.9 V. The regions, where T > 900 K, are mapped using a solid black line. The
region within this line would turn into an amorphous volume at the end of the programming cycle.

neurons is modified based on neural activities in presynaptic and
postsynaptic cells. Spike-timing dependent plasticity (STDP), a
form of Hebbian learning, which relies on relative spike timings
of presynaptic and postsynaptic neurons has been discovered in
several biological systems® ™ '° in 1990s. STDP as a quantifiable,
robust phenomenon providing an intuitive cellular mechanism
for learning has attracted a lot of attention in theoretical studies
on the learning rules."' '

CMOS based architectures'>~'” have been designed to emulate
biological synapses in the past. However, this approach occupies a
very large area (at least ~10 transistors per synapse) and, hence it
is not practical for designing massively parallel systems with 10" of
these circuits. Recently, several devices'® >° have been demon-
strated that could be potentially used to emulate biological

synapses. In addition to basic synalptic functionality, an electronic
analogue of a biological synapse®'° needs to exhibit STDP with a
cumulative weight change dependent on the number of spike pairs
and a maximum weight change of 100%. Such a device should also
have programming flexibility to capture the variation and the
different forms of STDP observed in biological synapses. A
nanoscale electronic device with these characteristics that can
operate on the picojoule energy consumption level is yet to be
demonstrated. Motivated by this challenge, we investigate the use
of phase change materials as electronic synapses by engineering
their switching characteristics. Phase change materials have been
intensively explored for memory applications due to its scalabilitzr,
fast write/erase speed, and good endurance characteristics®' ™
and recently introduced in the marketplace as a commercially
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available product.”>~*” In this work, we capitalize on advances in this
mature memory technology and engineer it for a completely
different functionality, namely, implementation of synaptic plasticity
for brain-inspired computing. Different from digital memory appli-
cations, here we utilize the continuous transition between resistance
levels of phase change materials in an analog manner to emulate
biological synapses (Figure 1a). We explore the important concepts
such as implementation of STDP by gradual programming of phase
change devices and modulation of STDP parameters and demon-
strate low energy consumption of electronic synapses. Scalability of
phase change devices down to the nanoscale™ and the cross-point
architecture stackable to three-dimensions (3D) offer the potential
for reaching the ultrahigh density (10'° cm™*) and compactness of
brain while achieving low power consumption (~1 pJ per synaptic
event). Nanoscale electronic synapses can be integrated with
neuromorphic neuron circuits'> on a microchip (similar to the
functional columns in the brain) which can process information
autonomously in complex environments by learning, adaptation,
and probabilistically associating information. Moreover, it can
provide a new platform for real time brain simulations, which will
allow new advances in the field of neuroscience.

Phase change materials exhibit a unique switching behavior
between amorphous (high resistivity) and crystalline (low re-
sistivity) states with the application of electric pulses that are
large enough to generate the heat required for phase transforma-
tion. Chalcogenide glass, more specifically GST (Ge,Sb,Tes), is
one of the widely used materials for phase-change memory
applications.”® The device structure, used for synaptic applica-
tion in this work, consists of a phase change material deposited
between a bottom electrode with a small contact area and a top
electrode (Figure 1, Supporting Information). Set and Reset
states refer to the crystalline and amorphous phases, respectively.
To investigate the feasibility of using phase change materials in
nanoscale electronic synapses, devices with 75 nm bottom
electrode diameter were fabricated. Details of device fabrication
are given in the Supporting Information. Electronic threshold
switching is observed in measured current—voltage character-
istics of phase change devices fabricated with GST between a
nanoscale W bottom electrode capped by TiN and a TiN top
electrode (Figure 2, Supporting Information).

A continuous transition between intermediate resistance
states is the first requirement to achieve the analog nature of
synaptic weight change in biological synapses.® There have been
several reports showing that intermediate resistance states can be
programmed between the fully set and the fully reset states.” '
Cross-sectional transmission electron micrographs (TEM) of
electronic synapses programmed to fully set, partially reset, and
fully reset states are shown in Figure 1b. In the fully set state, the
cell resistance is ~500 & and the GST layer is polycrystalline
everywhere in the cell, including the regions close to the TiN
bottom electrode. The cross section TEM of the partially reset
cell is taken after the cell is programmed to 200 k€2 by applying a
low amplitude reset pulse. A small mushroom-shaped amor-
phous region is observed at the top of the bottom electrode. For
the fully reset cell, the amorphous volume covers the entire
bottom electrode region and the mushroom-shaped amorphous
region is much larger after the application of a high amplitude
reset pulse. The cell resistance is dominated by the high
resistance of the amorphous GST region, which is measured as
2 MQ for the fully reset state. The electron diffraction pattern in
the bottom right panel (Figure 1b) indicates that GST away from
the bottom electrode is in the crystalline state. The diffraction

pattern (inset of the fully reset state in Figure 1b) of the
mushroom-shaped region confirms that GST is in amorphous
state close to bottom electrode for the fully reset state.
Conventional phase change materials for digital memory
applications are programmed to intermediate resistance levels
by current pulses. Those programming schemes provide up to 16
intermediate resistance levels. However, for synaptic applications
very fine control of resistance, close to 1% change per synaptic
activity, is required. Here, we use gradually increasing voltage
pulses with a custom engineered timing to probe the intermedi-
ate resistance levels and to maintain continuous transitions
between adjacent levels. An order of magnitude change in the
phase change cell resistance was achieved through 100 steps for
both the set and reset transitions. The repeatability of this gradual
phenomenon was confirmed through many cycles as shown in
Figure 1c. Gradual reset of the cell resistance is implemented by
using pulses with increasing amplitude in the 2—4 V voltage
range with 20 mV voltage steps. The pulse width and rise and fall
times of the reset pulses are 75, 25, and 25 ns, respectively.
Gradual set of the cell resistance is achieved by using stair-case
pulses with an increasing step of 0.1 V. Each voltage value in the
step is repeated continuously for 20 pulses, i.e., 20 pulses for each
voltage 0.5, 0.6, 0.7, 0.8, and 0.9 V. The pulse width and rise and
fall times of the set pulses are S us, 500 ns, and 500 ns,
respectively. To study the reliability of our current cells, we
performed endurance measurements by repeatedly switching
between two different states (max and min resistance). The cell
resistance measured at different switching cycles is shown in
Supplementary Figure 3 in the Supporting Information. The
phase change cells used in this study show no degradation up to
107 cycles, while the endurance can be as high as 10 czrcles for
high-quality devices fabricated on industrial standards.®
In order to understand and validate the gradual set/reset in
GST cells, finite element simulations are performed using
COMSOL.* Figure 1d shows the temperature distribution across
the cell for gradually increasing voltage pulses. The region within the
black borderline corresponds to the part of the phase change
material that is heated above the melting temperature (T > 900 K)
and hence would be amorphized at the end of the programming
cycle resulting in higher cell resistance. The amorphous region
grows gradually at the top of the nanoscale bottom electrode leading
to numerous intermediate resistance states. More detailed informa-
tion about simulations is provided in the Supporting Information.
STDP is interpreted as a learning rule that defines how a
synapse participates in information processing and brain network
functions. According to STDP learning rule, plasticity or so-
called synaptic weight depends on the relative timing of pre- and
postsynaptic spikes. The synapse potentiates (increase in synap-
tic weight or conductance) if presynaptic spike precedes post-
synaptic spike repeatedly, and the synapse depresses (decrease in
synaptic weight or conductance) if postsynaptic spike precedes
presynaptic spike repeatedly (Figure 2a). The precise pre-/
postspike timing window, which controls the sign and magnitude
of synaptic weight modification, is around 100 ms for biological
synapses.”'? STDP strengthens synapses that receive correlated
input, which can lead to the formation of stimulus-selective
columns and the development of selectivity maps in the brain.""
A conventional version of a STDP circuit built with CMOS
technology includes more than 20 transistors'® which occupy a
significantly larger area than a single element nanoelectronic
synapse. As demonstrated in this work, a very fine control of
intermediate resistance levels in a phase change material is
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Figure 2. Implementation of spike-timing-dependent plasticity with PCM cells. (a) Synaptic weight change is plotted as a function of relative timing of
pre- and postspikes. Measured STDP characteristics are shown along with the biological data measured in hippocampal glutamatergic synapses by Bi and
Poo.® The percentage change is calculated with respect to same initial value for all At points. (b) The pulsing scheme used to implement STDP with
PCM cells is shown. The schematic explains the net programming voltage applied across the electronic synapse at At =0, +20 ms, and —40 ms. V}, and
Vg, are the minimum voltage amplitudes that can induce potentiation and depression across synapse, respectively.

required for the implementation of the neuromorphic learning
rule, STDP. A phase change memory (PCM) cell serves as a
nanoscale electronic synapse. In a neuromorphic design, the pre-
and postspikes are generated by neuron circuits, which are
interconnected by nanoscale electronic synapses. Here, the pre-
and postspikes are generated by an arbitrary waveform generator,
emulating the presynaptic and postsynaptic neuron circuits. The
prespike is applied to one end (top electrode) of the electronic
synapse (PCM) and the postspike is applied to the other end
(bottom electrode). The shapes of pre- and postspikes are not
same as the biological action potentials. They are developed based
on the pulsing scheme used in gradual set/reset experiments with
GST cells in order to induce desired STDP characteristics for the
synapse. A simplified schematic with a fewer number of pulses than
the STDP schemes used for the experimental data is illustrated in
Figure 2b. Prespike is a pulse train, consisting of depression pulses
with increasing amplitudes and potentiation pulses with decreas-
ing amplitude. Depression and potentiation correspond to reset
and set states, respectively. Total duration of prespike is 120 ms.
The pulse width and rise and fall times of depression pulses are 50,
10, and 10 ns, respectively, while they are 1 us, 100 ns, and 100 ns
for potentiation pulses. The time spacing between two pulses is
kept constant, 10 ms for this specific STDP scheme, and can be
tuned to modulate STDP behavior as shown later in this paper.
The postspike serves as a gating function for the prespike. It is a
low amplitude, continuous pulse with 120 ms duration with a short
negative amplitude pulse of 8 ms at the center. The difference

between the prespike and the postspike (Vpe — Vpost) defines the
net programming voltage applied across the electronic synapse at
each point in time. For the case where pre- and postneurons spike
simultaneously (At = 0), the postspike does not overlap with the
depression or potentiation pulses of the prespike. For instance, if a
preneuron spikes 20 ms before the postneuron (At = 20 ms), the
negative part of the postspike will overlap with the second potentia-
tion pulse. The overall potential drop across the electronic synapse
will be above the potentiation threshold (V}, ), which will result in a
60% increase in synaptic weight. V,, is the minimum voltage
amplitude that can induce any potentation across the electronic
synapses. However, if the postneuron spikes 40 ms before the
preneuron (At = —40 ms), the negative part of the postspike will
overlap with one of the low amplitude depression pulses and result
in a —15% decrease in synaptic weight. Similarly, by repeating the
spike scheme for different Ats in the — 50 to 50 ms range, the overall
STDP curve is obtained as shown in Figure 2a. Our measured STDP
characteristics are in good agreement with the biological data
measured in hippocampal glutamatergic synapses by Bi and Poo.®
Although biological synapses exhibit much complex behavior,
the effect of STDP can be quantified by fitting the biological data
using a simple exponential as in eq 1.
Aw = Ae M7 (1)
where Aw is the percentage change in synaptic weight with
respect to the initial value and At is the pre-/postspike interval. A
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Figure 3. Modulation of STDP time constant and dependence on number of pre-/postspike pairs. (a) STDP is measured on PCM synapses by
modifying the spacings and amplitudes of the pulses in the prespike. LTP1, LTP2, and LTP3 correspond to three different prespike configurations for
long-term potentiation (LTP). LTD1, LTD2, and LTD3 correspond to three different prespike configurations for long-term depression (LTD). Time
constants are modulated for the STDP curve with the spike timing delay in the range of 10—30 ms for potentiation and —10 to —30 ms for depression.
(b) Different forms STDP learning rules. Upper left is asymmetric STDP with potentiation at positive At. Upper right is asymmetric STDP with
potentiation at negative At. Lower left is symmetric STDP with potentiation at positive At = ~0. Lower right is symmetric STDP with depression at all
At. (c) Synaptic weight change as a function of number of applied pre/postspike pairs is shown for different pre/postspike timings (At, from 10 to
45 ms). (d) The conductance change of GST cells is plotted as a function of set voltage amplitude for 10 and 100 spike pairs.

and 7 are two free parameters found by fitting the data. A and T
correspond to the scaling factor and the time constant for STDP
curve, respectively. These exponential fits are very convenient to
formalize STDP into a simple parametric model to be used in
computational studies. In recent years, biological experiments
have shown that the time constant of the STDP window can
show significant variation depending on the location of the
synapses in the brain.”>>* For instance hippocampal glutama-
tergic synapses show potentiation with 7 of 16.8 ms while 7 for
visual cortex neurons is measured as 13.3 ms. It is commonly
believed that synapses with different 7 may serve specific func-
tions in information processing at different stages of neural
pathways. The electronic synapses capturing this variation in
STDP characteristics of biological synapses can bring another
degree of freedom for designing complex cognitive systems in
the future. Control of T can be achieved by modifying the
amplitude and the time spacing between the individual pulses
in the prespike. As shown in Figure 2b, the pulses in prespike are
equally spaced and the pulse amplitude increases or decreases
linearly. We can decrease the spacing between the pulses with the
smallest spacing between the two highest amplitude depression
and potentiation pulses. In doing so a sharper change in STDP
characteristics and, hence, a smaller 7 can be obtained. Moreover,
an exponential increase and decrease in the amplitude of the
depression and potentiation pulses can be implemented, respec-
tively, instead of a linear increase and decrease in the pulse
amplitude shown in Figure 2b. In order to show that we can
control 7, STDP is measured on electronic synapses by modify-
ing the time spacing and amplitude of the pulses in the prespike

(Figure 3a). Time constants in the range of 10—30 ms for
potentiation and —10 to —30 ms for depression are demon-
strated. It is also possible to achieve higher 7 values depending on
the choice of spacing between pulses in the prespike.

Recent advances in neuroscience revealed that the synapses in
the brain columns with different functionality can exhibit differ-
ent forms of STDP.>” The forms of STDP, that reflect the
different information processing and storage needs depending on
the particular neural circuit, have been accepted as kernels for
modeling plasticity in several theoretical studies.'>***° The role
of different STDP forms is still an active research area in
neuroscience. Recent work® has shown that the symmetric
STDP (the lower left panel in Figure 3b) can enable robust
sequence learning. The noise immunity of a particular column is
strongly correlated with the long-term-depression window of
STDP. The different forms of STDP can be implemented using
the same single nanoscale electronic synapse by modulating the
order of potentiation and depression pulses in the prespike. Four
different forms of STDP, (1) asymmetric STDP with potentia-
tion at positive At, (2) asymmetric STDP with depression at
positive At, (3) symmetric STDP with potentiation around At =0,
(4) symmetric STDP with depression at all At, in good agree-
ment with the biological data®” are demonstrated. Implementa-
tion of different STDP kernels is a significant step toward
transferring all the theoretical work on learning algorithms,
structural plasticity, and noise immunity to a hardware design.

In a biological brain there is no single spike event. The neurons
in the brain continuously spike in the form of pulse trains with
varying frequencies and the total weight change due to individual
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Figure 4. Energy and programming current analysis for PCM synapse.
(a) Real time measurement of reset current flowing across the PCM
synapse is shown. The reset pulse width is 10 ns and pulse amplitude is
5.5 V. The energy consumed during reset operation is E = V X I,,, X
t=5.5V X 0.9 mA X 10 ns, where I, = peak/2. (b) Literature data for
reset current are shown as a function of equivalent contact diameter. The
trend line is fitted for the linear scaling of the bottom electrode contact
area as the device feature size goes down. The reset current for 20 nm
contact diameter is estimated to be 25 A. The reset current measured
on PCM synapse is shown with the green star symbol.

spike pairs is cumulative. In most of the biological studies, about
60—100 pre-/postspike pairs are repeatedly applied for several
minutes to induce long-term potentiation (LTP) or long-term
depression (LTD). The repetition of pre-/postspike pairs result
in a cumulative weight change dependent on the number of spike
pairs with a maximum of 100%. The number of pairing events
required to cause a certain amount of potentiation or depression
during STDP shows variation depending on the type and location
of synapses. For instance in the optic tectum of the tadpole in vivo,
while a moderate amount of LTP was induced after 20 pre-/
postspike pairs, maximum LTP was reached after 80—200 pre-/
postspike pairs.” On the other hand, in the cortex, 15 or fewer pre-/
postspike pairs were shown to induce a high level of LTP.** The
required number of pre-/postspike pairs is a parameter that needs
to be implemented to represent the probability of inducing
potentiation in a neural circuit. In Figure 3c, synaptic weight
change as a function of number of applied pre-/postspike pairs is
shown for different pre-/postspike timings (At, from 10 to 45 ms),
measured on the same electronic synapse. A sharp increase in the
synaptic weight change in the first 10—20 spike pairs is followed by
a slower increase and saturation close to the 100th spike pair. The
measured dependence of STDP on number of pre-/postspike
pairs for electronic synapses is very similar to the trend observed in
some of the synapses in young rat visual cortex.** These results can
be interpreted as the probability of inducing LTP in synapses
depends on the number of the spike pair repetitions.

The dependence on number of pre-/postspike pairs for
electronic synapses can be understood from a potentiation pulse
amplitude point of view. A synaptic weight increase, which can be
induced by a single pre-/postspike pair, can also be induced by a
larger number of pre-/postspike pairs if the amplitude of potentia-
tion pulses in STDP scheme is reduced. Lowering the potentiation
(set) pulse amplitude results in a smaller fraction of crystalline
region inside the amorphous cap in GST. The crystalline GST
volume expands as more set pulses are applied repeatedly. The
conductance change of GST cells, extracted from Figure 3¢, is
plotted as a function of set voltage amplitude for 20 and 100 spike
pairs in Figure 3d. It can be seen that to achieve the same
conductance change, the smaller amplitude spikes require a larger
number of repetition pairs. This characteristic of the phase change
materials allows for including the number of spike pairs as a

parameter in cognitive system design while covering the required
range measured in biological experiments.

Neuromorphic systems emulated by traditional CMOS cir-
cuits and MOS capacitors occupy significant area and have a
substantial energy consumption of about ~10~° J per synaptic
event.” In order to mimic the energy efficiency of biological
systems, a more aggressive approach, that achieves energy
consumption per operation in the order of a few picojoules, is
needed. The energy consumption of our electronic synapses is
calculated by measuring the current that flows across the phase
change cell during pre-/postspiking events. Figure 4a shows real
time oscilloscope trace of the current flowing across the synapse
while being programmed with a 10 ns pulse width. The peak reset
current is measured as 1.8 mA. The energy consumed to program
the cell to reset state (depression) is determined as ~S0 pJ (E=V X
Lyg X t=8.5V X 0.9 mA x 10 ns, where I, = peak/Z), while the
energy consumption for set operation (potentiation) is only
0.675p] (E=V X Iyg X t=0.9V x 0.075mA X 10 ns) as the cell
current is much lower during set programming. The energy
consumption in electronic synapses is dominated by the high
reset current required to melt-quench the GST to its amorphous
phase. The switching characteristics and the reset current have
been intensively investigated for nonvolatile memory applica-
tions in the literature. Figure 4b shows the reset current reduc-
tion as a function of the equivalent bottom electrode diameter,
with the data from recent publications.******”>* The reset
current scales with the effective bottom electrode area of the
phase change memory cells and an average current density of
~20MA/cm” is required to program the cells. The measured
reset current of 1.8 mA for electronic synapses with 75 nm
bottom electrode diameter agrees well with this scaling trend.
The scaling trend line illustrates that reset currents as low as 25 A
will be sufficient for electronic synapses with a <20 nm bottom
electrode diameter. The energy consumption for <20 nm elec-
tronic synapses is projected as 0.027 pJ and 2 pJ for set and reset
operations, respectively. In addition to minimizing the size of
electronic synapses with various sublithographic techniques,
optimal structures to achieve better current localization and
thermal isolation®* can further reduce energy consumption to
less than picojoule levels for electronic synapses made from
phase change materials. A recent study®> has shown that phase
change memory devices fabricated with carbon nanotube elec-
trodes can exhibit reset energy consumption as low as 100 fJ. It
has also been demonstrated that switching from the amorphous
to crystalline state can be achieved for phase change nanoparticle
sizes as small as 1.8 nm®® showing promise for future scaling of
the cognitive systems.

In this work we have demonstrated a new single element
nanoscale device, based on the successfully commercialized
phase change material technology, emulating the functionality
and the plasticity of biological synapses. The electronic synapse
demonstrated here is an excellent analogue of biological sy-
napses, implementing STDP with a cumulative weight change
dependent on the number of spike pairs and a maximum weight
change of 100%. To our knowledge, this is the first demonstra-
tion of a single element electronic synapse with the capability of
both the modulation of the time constant and the realization of
the different STDP kernels. The nanoscale size and picojoule
level energy consumption are significant steps toward reaching
the compactness and energy efficiency of a biological brain for
future brain-inspired computational systems. Our work can
be easily extended to a cross-point architecture allowing
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three-dimensional stacking of many layers of electronic synapses,
thereby enabling us to approach the massive parallelism of
the brain.

B ASSOCIATED CONTENT

© Ssupporting Information. Phase change synaptic device
fabrication, basic electrical characterization of fabricated devices,
measurement setup for implementation of synaptic plasticity,
and details of finite element simulations for gradual resistance
change. This material is available free of charge via the Internet at
http://pubs.acs.org.
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